Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
نویسنده
چکیده
Ensemble methodology, which builds a classification model by integrating multiple classifiers, can be used for improving prediction performance. Researchers from various disciplines such as statistics, pattern recognition, and machine learning have seriously explored the use of ensemble methodology. This paper presents an updated survey of ensemble methods in classification tasks, while introducing a new taxonomy for characterizing them. The new taxonomy, presented from the algorithm designer’s point of view, is based on five dimensions: inducer, combiner, diversity, size, and members dependency. We also propose several selection criteria, presented from the practitioner’s point of view, for choosing the most suitable ensemble method.
منابع مشابه
A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders
Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملDiversity creation methods: a survey and categorisation
Ensemble approaches to classification and regression have attracted a great deal of interest in recent years. These methods can be shown both theoretically and empirically to outperform single predictors on a wide range of tasks. One of the elements required for accurate prediction when using an ensemble is recognised to be error ‘‘diversity’’. However, the exact meaning of this concept is not ...
متن کاملCredit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2009